Thi thử tốt nghiêp THPT quốc gia môn Toán - Đề thi chính thức năm 2020 của Bộ GD&ĐT

Bộ GD&ĐT mã đề 123

Số câu: 50 câu.

Thời gian làm bài: 90 phút

Tổng số câu hỏi: 0

Câu 1. Cho hàm số f(x) có bảng biến thiên sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 2. Với a, b là các số thực dương tùy ý và $a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b$ bằng

Câu 3. Nghiệm của phương trình ${{3}^{x-1}}=9$ là

Câu 4. Biết $\int\limits_{1}^{3}{f(x)dx=3}$. Giá trị của $\int\limits_{1}^{3}{2f(x)dx}$ bằng

Câu 5. Nghiệm của phương trình ${{\log }^{3}}\left( x-1 \right)=2$ là

Câu 6. Cho khối nón có bán kính đáy r = 5 và chiều cao h = 2. Thể tích của khối nón đã cho bằng

Câu 7. Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là

Câu 8. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong hình bên. Số nghiệm thực của phương trình f(x) = -1 là

Câu 9. Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng

Câu 10. $\int{{{x}^{2}}dx}$ bằng

Câu 11. Cho hàm số y = f(x) có bảng biến thiên sau:

Giá trị cực tiểu của hàm số đã cho bằng

Câu 12. Cho khối cầu có bán kính r = 4. Thể tích của khối cầu đã cho bằng

Câu 13. Cho khối hộp hình chữ nhật có ba kích thước 3; 4; 5. Thể tích của khối hộp đã cho bằng

Câu 14. Trong không gian Oxyz, cho đường thẳng $d:\frac{x-3}{2}=\frac{y-4}{-5}=\frac{z+1}{3}.$ Vectơ nào dưới đây là một vectơ chỉ phương của d?

Câu 15. Cho cấp số nhân $\left( {{u}_{n}} \right)$ với ${{u}_{1}}=3$ và công bội $q=2.$ Giá trị của ${{u}_{2}}$ bằng

Câu 16. Cho hình trụ có bán kính đáy  r = 8 và độ dài đường sinh l = 3. Diện tích xung quanh của hình trụ đã cho bằng

Câu 17. Cho khối chóp có diện tích đáy B = 6 và chiều cao h = 2. Thể tích của khối chóp đã cho bằng

Câu 18. Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

Câu 19. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Câu 20. Tập xác định của hàm số $y={{\log }^{5}}x$ là

Câu 21. Trong không gian Oxyz, cho mặt cầu $\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.$ Bán kính của (S) bằng

Câu 22. Số phức liên hợp của số phức z = -5 +5i là

Câu 23. Tiệm cận ngang của đồ thị hàm số $y=\frac{4x+1}{x-1}$ là

Câu 24. Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?

Câu 25. Cho hai số phức ${{z}_{1}}=3-2i$ và ${{z}_{2}}=2+i.$ Số phức ${{z}_{1}}+{{z}_{2}}$ bằng

Câu 26. Gọi ${{z}_{0}}$ là nghiệm phức có phần ảo dương của phương trình ${{z}^{2}}+6z+13=0.$ Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1-{{z}_{o}}$ là

Câu 27. Tập nghiệm của bất phương trình ${{3}^{{{x}^{2}}-13}}<27$ là

Câu 28. Số giao điểm của đồ thị hàm số $y={{x}^{3}}+3{{x}^{2}}$ và đồ thị hàm số $y=3{{x}^{2}}+3x$ là

Câu 29. Cho a và b là hai số thực dương thỏa mãn ${{4}^{{{\log }_{2}}\left( {{a}^{2}}b \right)}}=3{{a}^{3}}.$ Giá trị của $a{{b}^{2}}$ bằng

Câu 30. Cho hình chóp SABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a, SA vuông góc với mặt phẳng đáy và $SA=\sqrt{15}a$ (tham khảo hình bên).   Góc giữa đường thẳng SC và mặt phẳng đáy bằng

Câu 31. Giá trị nhỏ nhất của hàm số $f(x)={{x}^{3}}-24x$ trên đoạn [2;19] bằng

Câu 32. Cho hai số phức z = 1 + 2i và w = 3 + i. Môđun số phức $z.\overline{\text{w}}$ bằng

Câu 33. Cho hình nón có bán kính đáy bằng 2 và góc ở đỉnh bằng $60{}^\circ .$ Diện tích xung quanh của hình nón đã cho bằng

Câu 34. Cho biết $f(x)={{x}^{2}}$ là một nguyên hàm của hàm số f(x) trên R. Giá trị của $\int\limits_{1}^{2}{\left[ 2+f(x) \right]}$ bằng

Câu 35. Trong không gian Oxyz, cho điểm M(2;-2;3) và đường thẳng $d:\frac{x-1}{3}=\frac{y+2}{2}=\frac{z-3}{-1}.$ Mặt phẳng đi qua M và vuông góc với d có phương trình là

Câu 36. Diện tích hình phẳng giới hạn bởi hai đường $y={{x}^{2}}-4$ và $y=2x-4$ bằng

Câu 37. Trong không gian Oxyz, cho ba điểm A(1;0;1), B(1;1;0) và C(3;4;-1). Đường thẳng đi qua A song song với Bc có phương trình là

Câu 38. Cho hàm số f(x) có bảng biến thiên như sau:

Số điểm cực đại của hàm số đã cho là

Câu 39. Tập hợp tất cả các giá trị thực của m để hàm số $y=\frac{x+4}{x+m}$ đồng biến trên khoảng $\left( -\infty ;-7 \right)$ là

Câu 40. Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng $60{}^\circ .$ Diện tích của mặt cầu ngoại tiếp hình chóp S.ABC bằng

Câu 41. Trong năm 2019 diện tích rừng trồng mới của tỉnh A là 600 ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm liên tiếp đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Kể từ năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha?

Câu 42. Cho hàm số $f(x)=\frac{x}{\sqrt{{{x}^{2}}+2}}$. Họ tất cả các nguyên hàm của hàm số g(x) = (x+1)f’(x) là

Câu 43. Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng của S qua O. Thể tích khối chóp S’.MNPQ bằng

Câu 44. Cho hàm số $y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\,\,\left( a,b,c,d\,\,\in R \right)$ có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

Câu 45. Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Câu 46. Xét các số thực không âm x và y thỏa mãn $2x+y{{.4}^{x+y-1}}\ge 3.$ Giá trị nhỏ nhất của biểu thức $P={{x}^{2}}+{{y}^{2}}+4x+6y$ bằng

Câu 47. Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1, 2, 3, 4, 5, 6, 7, 8, 9}. Chọn ngẫu nhiên một số thuộc S, Xác suất để số đó không có hai chữ số liên tiếp cũng chẵn bằng

Câu 48. Cho hàm số bậc bốn f(x) có bảng biến thiên như sau:

Số điểm cực trị của hàm số $g(x)={{x}^{4}}{{\left[ f(x+1) \right]}^{2}}$ là

Câu 49. Có bao nhiêu số nguyên x sao cho ứng với mỗi x có không quá 728 số nguyên y thỏa mãn ${{\log }_{4}}\left( {{x}^{2}}+y \right)\ge {{\log }_{3}}\left( x+y \right)?$

Câu 50. Cho hàm số bậc ba y=f(x) có đồ thị là đường cong như hình bên. Số nghiệm thực phân biệt của phương trình $f({{x}^{3}}f(x))+1=0$ là