Đề thi thử học kỳ 1 môn Toán - Lớp 10

Thí sinh đọc kỹ đề trước khi làm bài.

Tổng số câu hỏi: 0

Câu 1. Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tìm tập hợp các điểm  thỏa mãn đẳng thức $\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA}  - \overrightarrow {MB} } \right|$.

Câu 2. Cho tam giác ABC, với M, N, P lần lượt là trung điểm của BC, CA, AB. Khẳng định nào sau đây sai?

Câu 3. TXĐ của hàm số $y = \sqrt {\frac{{3x + 5}}{{x - 1}} - 4}$ là với $\left( {a;b} \right]$ là các số thực. Tính tổng $a+b$?

Câu 4. Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng?

Câu 5. Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn $\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 ,2\overrightarrow {NA}  + 3\overrightarrow {NC}  = \overrightarrow 0$ và $\overrightarrow {BC}  = k\overrightarrow {BP}$. Tìm k để ba điểm M, N, P thẳng hàng.

Câu 6. Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

Câu 7. TXĐ của hàm số $y = \frac{1}{{\sqrt {2x - 5} }} + \sqrt {9 - x}$ là:

Câu 8. Cho tập $X = \left\{ {x \in N\left| {\left( {{x^2} - 4} \right)\left( {x - 1} \right)\left( {2{x^2} - 7x + 3} \right) = 0} \right.} \right\}$. Tính tổng S các phần tử của tập X.

Câu 9. Cho parabol (P) có phương trình $y = {x^2} - 2x + 4$. Tìm điểm mà parabol đi qua.

Câu 10. Cho hai điểm A và B phân biệt. Điều kiện cần và đủ để I là trung điểm AB là:

Câu 11. Cho tập hợp $X = \left( { - \infty ;2} \right] \cap \left( { - 6; + \infty } \right)$. Khẳng định nào sau đây đúng?

Câu 12. Trong các câu sau, câu nào là mệnh đề?

Câu 13. Cho 2 tập hợp $A = \left( { - 7;3} \right),B = \left( { - 4;5} \right)$. Chọn khẳng định đúng ?

Câu 14. Chọn khẳng định đúng ?

Câu 15. Tìm m để hàm số $y = {x^2} - 2x + 2m + 3$ có giá trị nhỏ nhất trên đoạn $[2;5]$ bằng $- 3$.

Câu 16. Cho hai tập hợp M, N thỏa mãn M \subset N. Mệnh đề nào sau đây đúng?

Câu 17. Trong các hàm số sau, hàm số nào là hàm số chẵn ?

Câu 18. Tìm hàm số bậc hai có bảng biến thiên như hình vẽ dưới đây.

Câu 19. Cho hình chữ nhật $ABCD$ và số thực $k > 0$. Tìm tập hợp các điểm M thỏa mãn đẳng thức $\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = k$.

Câu 20. Tìm tất cả các giá trị của b để hàm số $y = {x^2} + 2(b + 6)x + 4$ đồng biến trên khoảng $(6; + \infty )$.

Câu 21. Tìm khoảng nghịch biến của hàm số $y =  - {x^2} - 2x + 2017$.

Câu 22. TXĐ của hàm số $y = \frac{{x + 2}}{{{{\left( {x - 3} \right)}^2}}}$ là:

Câu 23. Cho hai tập $A = \left[ { - 1;3} \right);\,B = \left[ {a;a + 3} \right]$. Với giá trị nào của a thì $A \cap B = \emptyset$.

Câu 24. Cho parabol (P) có phương trình $y = 3{x^2} - 2x + 4$. Trục đối xứng của parabol là đường thẳng:

Câu 25. Từ 10 điểm phân biệt, lập được tất cả bao nhiêu vecto khác vecto - không có điểm đầu, điểm cuối là 2 trong 10 điểm đã cho ?